Online Auction using Mobile Cloud Computing

S. Sudha Mercy*

1Assistant Professor, Department of CSE, Jeppiaar Institute of Technology, Sriperumbudur, India.

*Correspondence: ssudhafeb@gmail.com

Abstract— In this paper, auction through mobile phone application is presented. It has a very large potential market of sellers and buyers. It has two categories namely customer interface and admin interface. This paper involves the design and implementation of an online auction system. This system presents an online display of category wise products they want to sell or bid. There is an admin panel in which an admin can control the whole bidding system. Admin can approve products by the categories and also can control the registered customers. The analysis stage is performed first for the case study. Besides, the intention to establish what goes on operationally within the online auction house. It also defines the layout in android application. In which many number of bidders bids the auction and finally the admin of the auction will store the result of the winning bidder details and send through mail personally and finally the shipment process will be carried out.

Keywords—truthful incentive mechanism; cloud computing; data security

1. INTRODUCTION

Cloud computing is a style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet. Users need not have knowledge of, expertise in, or control over the technology infrastructure in the "cloud" that supports them. The concept generally incorporates combinations of the following: infrastructure as a service (IaaS), platform as a service (PaaS), software as a service (SaaS). Cloud computing customers do not generally own the physical infrastructure serving as host to the software platform in question. Instead, they avoid capital expenditure by renting usage from a third-party provider. While cell phones have turned out to be progressively omnipresent in our day by day life, they are genuinely obliged by restricted battery limits and calculation abilities. To lighten asset shortage of cell phones, one viable path is to offload their complex or asset requested assignments to remote cloud through pay as you go. Be that as it may, such an approach may endure extensive web deferral and high vitality utilization, because of long separation correspondence.

To address this issue, ongoing work recommends that using the unused assets of the cell phones in the vicinity can accomplish better framework execution. For instance, correspondences among the close-by cell phones through WLAN/Wi-Fi can altogether diminish the correspondence inactivity and system clog. By cloud computing, task execution among mobile devices also involves a resource trading between the owners of the tasks and the mobile devices participating in task execution. To capture the competition and conflict of task owners and mobile devices. This paper aims to design an auction mechanism to solve the task assignment problem in mobile cloud computing.

2. PROPOSED SYSTEM

The proposed work has a tendency to attempt to bring the auction through mobile application that is extremely helpful for the bidders who return from the long distance simply to shop for a product. This is often primarily as a result of on-line auction break down and take away the physical limitations of ancient auctions like geographic, presence, time, space and a little target market. In this application the protection has been increased that isn’t applicable in real time auction, here the beginning bids at low rate however increase at steady rates to fulfill market demand and item quality. The online auction provides the shoppers with nice benefits of low costs, bigger product choice and bigger potency compared to the standard ancient offline markets. To capture the competition and conflict of task owners and mobile devices, the methodology aims to design an auction mechanism to solve the task assignment problem in mobile cloud computing.

This proposed methodology involves the design and implementation of an online auction system. This system presents an online display of category wise products they want to sell or bid. It is:

- Simple and time saving.
- A truthful incentive mechanism is designed based on a quality-driven auction.
Architecture Diagram:

The first phase involves registration of the user details. The login credentials and the product details will be viewed and verified by the admin. The buyer can view the product list and based on the auction schedule on secured basis the information will be exchanged between the user and bidding process will be completed.

3. SYSTEM DESIGN

3.1 LOGIN & REGISTRATION:

In this module, design for login and signup screen. Android xml is used to develop classical screens in the application and java for coding. The signup page contains email id or user name, mobile number, and password kinds of details should be stored in database. Login screen contains user id or username and password. when the user, login the app it should retrieve the data to the database and combine based on user input if its matches user name and password, the user can proceed in the app otherwise it gave an alert and show a message to the user.

3.2 DATABASE CREATION

User-id (Registered Number), username, password, mobile number, address have been stored in MySQL database using PHP function and JSON. Generally android should have its own inbuilt database named as Cloud Database. But it cannot store the value in cloud, so PHP and JSON is used for storing and retrieving the data in cloud using the Android application.

3.3 BIDDING PROCESS

In this module, bidding process is designed. In this application it is one of the major working in bidding process, the user can be searching ads of product or material.

3.4 SELLER NOTIFICATION

In this module, design for seller notification is done in the application. Users can buy a product based on the seller user data in auction process and there will be only one winner for seller product. For security purpose mail notification will be send regarding valid user.
3.5 PRODUCT VERIFICATION PROCESS

In this module, design for production verification is done. The admin will be verifying the user details, for both seller and buyer process during product verification phase.

4. RESULTS AND DISCUSSION

4.1 USER LOGIN
This is the login page where the new user has to register and the existing users can enter their mobile number, password to login.

4.2 HOME PAGE
This page consists of the seller, bidder and feedback page in which the land to be sold, the land or machine in auction is been displayed.

4.3 UPLOADING DOCUMENTS
The required documents for the land or machine to be sold is uploaded in the form of PDF and submitted to the admin.

4.4 AUCTION PAGE
This page contains the ads regarding the product and the corresponding feedback.
4.5 INFORMATION PAGE
This page contains information regarding the product seller name, mobile number, address, description and the amount for bidding.

5. CONCLUSION
This methodology will empower the two Buyers and Sellers to participate in auction process. The System has made auction increasingly powerful and effective in their conduct and has driven organizations to another dimension, compelling numerous to make the vital changes to achieve the new market of bidders. The further enhancement can be done in the future for the system.

FUTURE ENHANCEMENTS
The future involves machine learning approach to design and implementation of an online auction system. This system presents an online display of category of wise products they want to sell or bid.

REFERENCES


or not to update?" *Wireless Networks*, vol. 1, no. 2, pp. 175–185,
1995.

[6] K. Li, "Analysis of Distance-Based Location Management in

management for multidimensional PCS networks," *IEEE/ACM
2003.

management method of personal communication system," *E-

[9] C. K. Ng and H. W. Chan, "Enhanced Distance-Based
Location Management of Mobile Communication Systems Using
a Cell Coordinates Approach," *IEEE Transactions on Mobile

distribution to enhance sequential paging in distance-based
mobility management for PCS networks," *IEEE Transactions on Wireless Communications*, vol. 5, no. 11, pp. 3029–3033, Nov.
2006.

Threshold for Distance-based Location Tracking Strategies in

[12] Y. Zhu and V. C. M. Leung, "Optimization of Distance-
Based Location Management for PCS Networks," *IEEE
Transactions on Wireless Communications*, vol. 7, no. 9, pp.

Distance-Based Scheme for PCS Networks with CTRW model," *IEEE Communications Letters*, vol. 13, no. 2, pp. 408 - 410, June
2009.

renewal theory to call handover counting and dynamic location
management in cellular mobile networks," *European Journal of

International Conference on Computer Science and Information
Technology (ICCSIT)* 2011, pp. 594-596.